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Abstract

Privacy is considered one of the key challenges when
moving services to the Cloud. Solution like access
control are brittle, while fully homomorphic encryp-
tion that is hailed as the silver bullet for this problem
is far from practical. But would fully homomorphic
encryption really be such an effective solution to the
privacy problem? And can we already deploy archi-
tectures with similar security properties? We pro-
pose one such architecture that provides privacy, in-
tegrity and leverages the Cloud for availability while
only using cryptographic building blocks available
today.

1 Introduction

“Yes, in this immense confusion one thing alone is
clear. We are waiting for Godot to come.”

– Samuel Beckett
Waiting for Godot

Cloud computing services promise scalable out-
sourcing of computations, networking and storage.
Yet, offering such services as a commodity has met
resistance due to privacy concerns. Users and con-
sumer groups are increasingly sceptical of infrastruc-
tures that centralise personal data for processing.

Yet, the drive to store personal data in clouds is
not likely to end. Social trends such as consolidation
of medical records with sevices such as Microsoft
HealthVault or Google Health, or consolidation of
personal fiance data with Mint.com, as well as oth-
ers see users record, store and process an increas-
ing amount of data about their personal lives. At
the same time traditional services, such as car insur-
ance, electricity provision, road tolling, and taxation
start relying on more fine-grained information about

individuals lives and actions. So far the favoured ar-
chitecture for these services has been a centralised
repository or conduit of personal information.

Three key solutions have been proposed for re-
solving the privacy problem of processing personal
information on clouds.

First, security policies can be applied to ensure
only authorised entities and processes get access to
the data. This is the prevalent model, and it relies
on both physical security and correct access control.
At the same time it is a brittle model: data is stored
in clear and vulnerable to corrupt insiders, phish-
ing attacks on system administrators (as it was the
case with the Google Aurora attacks1), or a higher
authority that can override the security policy.

A second solution involves trusted hardware at the
servers or the clients to ensure the correctness of pro-
cessing as well as the confidentiality of the data. Of-
ten Trusted Computing Modules (TPM) present on
most modern motherboards and even mobile hard-
ware are relied upon, but these are not safe against
adversaries with physical access to the module. Ro-
bust secure co-processors, such as the IBM4758 are
expensive and slow compared with a modern com-
puter and using those to perform all computations
would deny most benefits of cloud computing.

Finally, and from an academic viewpoint most in-
terestingly, cryptography is presented as a solution
to privacy concerns. Convincing solutions have been
presented for secure storage of encrypted data [], as
well as a restricted set of operations on encrypted
data (such as searching an index [11]). The practi-
cality of those is debatable on the basis of cost [7].

At the same time, fully homomorphic encryption
seems to be hailed as the holy grail, that will “solve”
the privacy problem [9, 16, 14]. An increasing num-
ber of publications at major cryptography confer-
ences are looking at constructions for such schemes

1http://en.wikipedia.org/wiki/Operation_Aurora
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or applications of such schemes to secure outsourcing
of computations. In general these schemes promise
the ability to perform computations on encrypted
data. They decompose any computation to an equiv-
alent logic circuit, and implement the basic gates in
terms of the “plus” and “multiply” operations. The
circuit results in a ciphertext encoding the result of
the computation that is sent back to the user for
decryption.

There are two key problems with this approach:
first, no practical fully homomorphic encryption
schemes exists yet [10]; second, as we will argue,
even if fully homomorphic encryption was available
at the cost of other cryptographic operations today,
it would still be inefficient for most computations
and could be replaced with a simpler architecture
that is already realisable at a low cost today.

We devote the remaining of this paper in describ-
ing a cryptographic architecture that could be made
available today to solve aspects of the problem of pri-
vacy in the cloud at a relatively similar cost as if ho-
momorphic encryption was used. While the network
overheads of the proposed approach will be higher,
its advantage is that it can be deployed today.

1.1 Contributions

The contributions presented in this position paper
are as follows:

• We argue that even cheap homomorphic encryp-
tion is not likely to solve the privacy problem in
the cloud.

• We show that integrity and privacy can be cryp-
tographically achieved today for a broad class
of processing problems on personal data. These
are based on efficient models of private compu-
tation.

• We argue that cloud computing can be used to
leverage and enhance those technologies, in par-
ticular in terms of availability.

• We present two in-depth case studies where
our architecture can be deployed to solve real
world privacy problems. One relates to the
recreational use of life logging. The other is a
privacy-friendly high-value location based ser-
vice, such as pay-as-you-drive insurance.

1.2 Paper Organization

The rest of this paper is organized as follows. Sec-
tion 2 presents the problem of privacy for cloud
services and examines the practicality of solutions
based on homomorphic encryption. Section 3 frames
a special but important class of services for which we

provide a privacy solution. Section 4 outlines our
privacy solution. Section 5 presents two case stud-
ies. Finally, Section 6 concludes.

2 Aspects of Cloud Privacy Problem

We consider the common architecture where per-
sonal data from multiple users is stored and pro-
cessed on a cloud. The cloud could either belong
to the service provider or be a utility cloud man-
aged by a further third party — making the privacy
and trust issue even more complex. Examples of
such architectures include most large database sys-
tems, back end systems used in all branches of gov-
ernment, customer management systems, financial
transaction systems, social networks, etc.

From the point of view of the service provider,
centralising personal information provides availabil-
ity and integrity. When the data is needed it is
guaranteed to be at hand, since it is stored in clear
at the provider. Furthermore, the correctness of
any computations on the inputs is guaranteed to
be performed correctly since it is performed on the
provider’s own infrastructure.

There are also strong non-security reasons for stor-
ing all data on the provider side. Unforeseen com-
putations can be performed on it at any future time.
The data can be “anonymized”, sampled, aggregated
and used for other back-end processes. Finally, the
data is available to customise a user’s experience on
the server side (where traditionally web pages are
rendered, or bills are printed).

From the user perspective, this architecture is con-
venient, but comes with privacy problems — namely
the wholesale availability of personal data to a third
party. Regulations are in place to prevent the wild
sharing and use of this data in some jurisdictions,
and industry initiatives such as privacy policies and
seals are used to provide some comfort to users. Still
data is misused, seized, lost or compromised regu-
larly across the industry.

How is the application of fully homomorphic en-
cryption going to solve this problem? Its proponents
suggest that users will store on the cloud encrypted
data items instead of plaintext. Computations on
those data items will then be expressed as circuits
and logical gates that can be implemented using the
two ring operations allowed through the homomor-
phism on the ciphertext. That will result in a ci-
phertext encoding the output of the computation.

Even if one assumes the cryptographic operations
are efficient, this deviates from the current model.
First of all, a decryption operation must be per-
formed on the resulting ciphertext for it to be of
any use to the service provider. One could consider

2



sending the result back to the user for decryption
– introducing an additional round trip and a de-
pendency on the liveness and reachability of a user
device. Additionally, the service needs to prove to
the user that the result is indeed the correct output,
namely the result of the correct function applied to
the correct encrypted input. If the users decrypts
ciphertexts without verifying their well formedness,
their can simply be used as decryption oracles to
decrypt any arbitrary ciphertext.

Another possibility for decryption is using a
trusted third party holding decryption keys. This
party is vulnerable to compulsion or abuse, it might
have to rely on secure hardware, and would also have
to check the well formedness of ciphertexts before
decryption – making it expensive to run (i.e. as ex-
pensive as performing the computation or verifying
it as we will see in our scheme).

We will show that for on-line service provision an
alternative cryptographic architecture guarantees in-
tegrity and privacy with technology that is currently
available 2.

3 Ingredients for a Solution

As we have discussed the problem of privacy in on-
line services is linked with the issue of integrity of
computations as well as availability of the data when
it will be needed. Yet, a large number of on-line
services share further characteristics:

• The users are entitled to all personal informa-
tion about them, as information about the pro-
cessing their personal data will be subject to.
This is a key principle of data protection frame-
works as implemented in the EU, Australia and
Canada, and a key component to process data
lawfully (consent) and fulfilling subject access
rights. Technically, user data and the functions
applied to it are not a secret to the users.

• Users are increasingly accessing on-line content
on full computational platforms, such as mod-
ern web-browsers or smart phones. Further-

2Proponents of the applications of fully homomorphic en-
cryption have proposed architectures where computations are
simply outsourced to the cloud, and sent back to the users
without the results ever being revealed. Even ignoring that
any encryption is many orders of magnitude slower than
a logic gate, evaluating a circuit takes always O(N) com-
putations in the size of the input at least, compared with
many O(logN) algorithms used for searching indexes, rank-
ing or sorting, etc. Furthermore, there will always be a need
to check that any ciphertext is the result of the correct com-
putation before relying on it. Yet, outsourcing computations
is not the main focus of our argument — which is centred on
service provision based on the processing of personal informa-
tion.

more, commonly those devices have good con-
nectivity.

• Services want to detect early any problems on
the user side that may prevent them from deliv-
ering a service. For example the lack of credit
card records, or an account with certain priv-
ileges, or a faulty sensor that does not report
data. They wish to detect such faults even be-
fore they use the personal data, e.g. for pay-
ment or analysis.

• Finally, services may process data in ways that
was not envisaged when the data was collected,
if subsequently the user has given consent for
such processing. Personal data may also be ag-
gregated, generalized or sampled in an effort to
“anonymize” it, in ways and on dimensions that
were not foreseen during collection.

We also note some rather established cryptographic
results:

• The problem of secure storage on untrusted
clouds to guarantee confidentiality and integrity
is well studied, and satisfactory solutions ex-
ist [11]. Thus we can use the cloud for pure
storage without worries.

• Relatively efficient cryptographic mechanisms
exist for showing that a certain value is the re-
sult of a computation on certain inputs. Fur-
thermore, zero-knowledge proofs allow for the
inputs to remain secret – by only requiring com-
mitments to be made public [8].

Given those observations we propose an architecture
that can be practically realised today to address pri-
vacy concerns.

4 Overview

In our architecture information from sensors, third
parties or volunteered by the user is can be collected
and processed in a privacy friendly, way while pre-
serving privacy and integrity. Figure 1 illustrates
the data flows of our protocols.

First of all we assume that all parties in the sys-
tem, the user, the cloud service, sensors and third
parties producing data all have public / private key
pairs both for the purpose of signing and verifying
messages as well as encrypting and decrypting them.

First, we propose for data to be specifically pack-
aged and “certified” for further cryptographic pro-
cessing. Personal data (ri) is encoded as a stream
of cryptographic commitments (Commit(ri)) such as
Pedersen [6] or Groth [4] commitments. The bind-
ing property of commitments ensures the integrity
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If Verify(P, f, Ri, Si, X)
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Retrieve user data &
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Store user data
(Verify & store)

Send result

Store

Compute

Store user data

Figure 1: Flows of personal data to support client-side computations with integrity.

of committed values, while the hiding property en-
sures the confidentiality of the personal information.
The personal data is encrypted under a key (KU ,
public or symmetric) only known to the user, under
any secure encryption scheme [11]. Commitments
(Commit(ri)), encrypted personal data (EKU

(ri))
and any public information (Li) can be signed by
the third party that generates the data under a key
KTP or the users themselves if the data is volun-
teered to a service3. The commitments, encrypted
and public data (Ri) and signatures (Si) are sent
back to the provider and stored in the cloud.

Computations can be performed on the personal
data items by relying on clients to download them,
decrypt them, compute the necessary function, and
send the results back to the service along with a zero
knowledge proof of correctness.

More specifically, a user can download their per-
sonal information and the associated signatures de-
noted Ri = (EKU

(ri),Commit(ri), Li) and Si re-
spectively. They can decrypt the this informa-
tion using their key KU , to recover the personal
information ri. Alongside any public information
Li, personal information can be used to compute
any desired function X = f(ri, Li). In parallel
a non-interactive zero knowledge proof of knowl-
edge can be built attesting correctness, namely

3Even user generated data can have value: a user being
able to prove that an amount provided for their revenue is
the same as the figure provided to the tax authorities would
be of great interest to many services.

∃ri.X = f(ri, Li) and a valid signed commit-
ment Commit(ri), without revealing anything fur-
ther about the personal information ri. We denote
this proof P = ZKProof(f,Ri, Si, X).

Efficient non-interactive zero-knowledge proofs of
knowledge have been studied for the past 15 years,
and they most notably allow:

• Prove at a value is in fact part of a commit-
ment, or multiple values are part of a commit-
ment [13].

• Lineal algebra involving committed values and
constants [2].

• Proving equality [13] and inequalities [3]
amongst committed values.

• Proving logical statement with AND, OR and
NOT connectives on predicates applied to com-
mitted values [2].

• Multiply committed values [3].

• Division and modular operations relating com-
mitted values [5].

• Efficient set membership [3] and look-up opera-
tions on committed keys-value pairs [12].

The set of operations allow us to express any com-
putation as a circuit and prove its correctness, as
for the fully homomorphic encryption case. Further-
more for many common special computations more
efficient proofs are available – which we leverage in
our case studies.
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Finally, the client sends back to the service the
computed value X along with the proof P . The
service can verify the correctness of the calculation
before accepting it.

Discussion. The proposed architecture achieves
integrity for computations on private data, while
maintaining their confidentiality by performing com-
putations on computing resources controlled by
users. Yet, those computations can be verified pre-
venting users from cheating the service. Putting a
user in the loop is a departure from the current archi-
tecture, but is no different from a security standpoint
to implementing a similar architecture using fully
homomorphic encryption if it ever becomes prac-
tical. A fully homomorphic scheme would require
both interaction with the users, as well as a proof
that the computations were performed correctly.

Cloud services are leveraged to by our architecture
in key ways: first, encrypted data is available to any
user device to perform the privacy friendly compu-
tations. All that needs to be migrated from device
to device is the decryption key. Second, the service
provider can verify the availability and even validity
of the encrypted data at the time of collection, en-
suring that an alarm is raised as soon as possible if
expected data items are missing or invalid. Finally,
the collection and verification of results are offloaded
to the cloud making the approach scalable to large
numbers of users. Further, processing of the results
of private computations can be done on the cloud or
any back end system.

5 Case Studies

Much of the inspiration for the two case studies
in this section comes from the idea of living by
numbers, i.e. that our day-to-day existance can
be recorded using a variety of sensors, analyzed,
uploaded, shared, etc. Examples of this often in-
clude health and wellness applications, recording
one’s day-to-day behavior to share with other, both
trusted and untrusted entities, etc. The reader is
referred to a special issue of the Wired magazine for
more details [17].

In many living-by-numbers scenarios, both the in-
tegrity and the privacy of the data that is being col-
lected is of interest. The user might have an in-
centive to forge their driving records to get lower
insurance rates. Or the user might check in at ficti-
tious exotic locales to bump up their Facebook social
status. At the same time, the same user might be
uncomfortable sharing this, either forged or genuine
data, with various parties. We illustrate some of
these issues with the two representative case studies

below.

5.1 Training Regimes for Athletes

As sensors are increasingly becoming part of every-
day life, more and more data about the user’s daily
behavior becomes available. In some scenarios, this
data remains local to the user. An example of this
is the DigiFit device4, which supports a heart rate
monitor, a pedometer, a cycling speedometer, a sleep
monitor, as well as a set of other excercise and well-
ness sensors supporting the Ant+ protocol. The
data is aggregated and processed, although this is
done locally, on a mobile device such as an iPhone.
Much of the time, While many health and wellness
scenario have important privacy implications, the
user has no incentive to forge data as they are them-
selves the primary data consumer.

However, when data is shared with third parties
(such as insurance companies for the purpose of get-
ting a lower insurance rate due to a“healthy lifestyle”
bonus) or other individuals (as in the case of fel-
low dieters in an online Weight Watchers support
group), the integrity of the data can sometimes be
suspect.

To elaborate one particular scenario, imagine an
athlete who is training to a major competition such
as the Olympics. As part of her regimen, she has
to report her heart rate at 15 minute intervals and
distances she walks daily. This information can be
collected by a bracelet-like device she keeps on her
wrist, which is assumed to be unforgeable and will
detect when it is removed, helping to mitigate the in-
tegrity threat by an unscrupulous athlete who wants
to lie about her daily workout routine, for exam-
ple. The threat to the athlete’s privacy is present as
well: knowing where the athlete lives in combination
with location maps (background data) might allow
her coach to understand where she goes and when.
Moreover, frequent pulse data might be used to infer
the time of, or type of, romantic activity that occurs
when she visits her boyfriend’s house, for instance.

In reality, all that is required may be an aggre-
gate measure of her pulse data to ensure that her
pulse has been above 120 for at least 1 hour every
day and that she has walked or ran at least 5 miles.
Currently, such applications seem to be blissfully un-
aware of privacy and integrity implications of what
they are doing, as examplified by TrainingPeaks soft-
ware5.

4http://www.digifit.com
5http://home.trainingpeaks.com/
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5.2 Automatic Car Insurance Tolling

Another scenario comes from a case of mileage me-
tering to pay for auto insurance, already examined
in [15, 1]. One of the emerging schemes involves pay-
ing a rate that is prorated depending on the num-
ber of miles driven, either linearly, or using several
brackets. Of course, given that your insurance com-
pany knows much about you, including your address,
much can be inferred given precise daily mileage
data. One such insurance provider, MileMeter.com
says the following on their site:

How do you know how much to bill
me?
We still respect your privacy, and don’t use

invasive and expensive electronic tracking de-

vices to report on your mileage. Instead, we

trust our customers and count on you to help

us keep your rates as low as possible. As of

September 14th, when you purchase or renew

a policy, we’ll ask for a digital photograph of

your car’s odometer, with your driver license

visible in the photograph. We realize this is a

new step we’re asking you to take, but gather-

ing this information helps MileMeter bill you

more accurately and efficiently – and we can

pass the savings on to you!

When do I have to provide a photo?
We’ll ask for a photo when you first purchase,

and when you renew every six months. We also

may ask you for another photo at a random

time for statistical purposes. You do not have

to provide a photo to get a quote!

However, this solution is clearly lacking: MileMeter
appears to be clearly aware of fraud possibilities and
tries to walk the fine line between accusing their cus-
tomers of being untrustworthy and blindly relying on
customer-provided data.

A solution that would provide both integrity and
privacy for collected data is may involve a hardware
device installed in the car (not dissimilar to a typical
automotive transponders used in cars for recording
tall charges). The device would detect basic kinds of
fraud such as device removal or tampering. It would
report the amount that the driver needs to be billed
for, computed using daily mileage readings and a
formula that is provided by the insurance company.

6 Conclusion

This paper proposes a practical strategy that may
be used to achieve both confidentiality and integrity

on the client, for many important classes of compu-
tation. We point out problems with the fully homo-
morphic encryption approach and offer a more im-
mediate solution that in our experience meshes well
with real-world scenarios, such as the two case stud-
ies we present. We have already built and deployed
systems that implement this privacy design pattern
for the case of smart metering and billing [12], and
we argue that it is applicable very widely to solve
issues of privacy in the cloud.
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